skip to main content


Search for: All records

Creators/Authors contains: "Shrestha, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Langmuir circulation, a key turbulent process in the upper ocean, is mechanistically driven and sustained by imposed atmospheric wind stress and surface wave drift. In addition, and specifically in coastal zones, the presence of a mean current – whether associated with tidal currents or large-scale eddies – generates bottom-boundary-layer shear, which further modulates the physical attributes of coastal-zone Langmuir turbulence. We show that the presence of bottom-boundary-layer shear generated by oblique forcing between the mean current, atmospheric drag, and monochromatic wave field direction changes the orientation of the resultant, large-scale Langmuir cells. A model to predict this resultant orientation, based on salient parameters defining the forcing obliquity, is proposed. We also perform a systematic parametric study to isolate the ‘turning’ influence of salient parameters, which reveals that the resultant Langmuir cell orientation is always intermediate to the imposed forces. In order to provide a rigorous basis for the results, we study terms responsible for sustenance of streamwise vorticity, and provide a theoretical justification for the observed results. 
    more » « less